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Abstract. A model of a 4D open string with non-Grassmann spinning variables is considered.
The nonlinear gauge, which is invariant under both Poincaré and scale transformations of spacetime,
is used for subsequent studies. It is shown that the reduction of the canonical Poisson structure from
the original phase space to the surface of constraints and gauge conditions gives the degenerated
Poisson brackets. Moreover it is shown that such a reduction is non-unique. The concept of adjunct
phase space is introduced. The consequences for subsequent relativistic invariant quantization are
discussed. Deduced dependence of spinJ from the square of massµ2 of the string generalizes the
‘Regge spectrum’ for conventional theory.

1. Introduction

The investigation of constrained dynamical systems started by Dirac [1] has continued in
connection with gauge theory development. These studies have taken many directions; one
being the modification of the conventional phase space concept (see, for example, [2]). In this
paper, we suggest a new viewpoint on the phase space for some kinds of gauge systems and
apply the suggested concept to an investigation of 4D string dynamics.

We start our study with the following simple example. Let the spaceHN be the
phase space of any dynamical system withN degrees of freedom; any pointM ∈ HN has
the coordinatesp1, q1, . . . , pN, qN which diagonalize the standard non-degenerated Poisson
brackets: {pi, qj } = δij , {pi, pj } = {qi, qj } = 0. Let us consider the subsetV ⊂ HN :
V = {M ∈ HN | p1 = 0, q1 > 0}. What is the Poisson structure of the setV ? It is clear that
such a structure must be degenerated because codimV = 1. The simplest foliation of the set
V will be the following:

V = ∪c>0V
0
c

where setV 0
c = {M ∈ HN |p1 = 0, q1 = c, (c = constant)}. It is well known that the

‘correct’ brackets for any setV 0
c will be the Dirac brackets{·, ·}1 for the pair of (second type)

constraintsp1 = 0, q1− c = 0. This bracket structure can be naturally extended on setV ; the
functionf0 ≡ q1 will be an annihilator. The interesting fact is that the constructed brackets are
non-unique. Indeed, we can introduce the other foliation of the setV : V = ∪c>0V

f
c , where the

subsetsV f
c = {M ∈ HN |p1 = 0, f (q1; q2, p2, . . .) = c, (c = constant)} were defined with

the help of some appropriate functionf such that condition 0< ∂f

∂q1
< ∞ holds. It is clear

that the corresponding Dirac brackets{·, ·}f differ from the brackets{·, ·}1; the annihilator for
the new brackets is the functionf. Thus, the reduction of the same Poisson structure from the
original phase spaceHN on some subsetV ⊂ HN can be ambiguous if the reduced brackets
are degenerate. In general, the situation is the same if we consider the system of the first type
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of constraintsf1, . . . , fk, wherek < N , instead of the single onep1 = 0. Of course, this
example is a special case of the general theory of degenerated Poisson brackets [3]. It was
discussed in detail because the goal of our subsequent studies is to investigate this effect in
string theory.

A satisfactory version of the 4D quantum (super)string has been the aim of the theoretical
studies of many authors (see, for example, [4–8]). Moreover, many authors have constructed
theories in arbitrary (non-critical) spacetime dimensions [9–11]. Of course, this list is
incomplete: a detailed review is impossible here. Our suggested approach differs, to our
knowledge, from others because it is founded on a new concept of adjunct phase space.

We consider the following model here. Let the fieldsXµ(ξ0, ξ1) and9A
±(ξ

0, ξ1) interact
with two-dimensional gravityhij (ξ0, ξ1), whereξ1 ∈ [0, π ] andξ0 ∈ (−∞,∞), such that the
dynamics is defined by the action constructed in accordance with the well-investigated manner
[12]:

S = − 1

4πα′

∫
dξ0 dξ1

√−h{hij ∂iXµ∂jXµ − i2ejI (0
0)AB9

A
γj∇I9B}. (1)

The notations are the following:h = det(hij ), the vectorsejI (ξ
0, ξ1) are the vectors of

2D basis such that the equalitieshij = eiI e
j

I take place and the matrices0µ andγi are the
Dirac matrices in the 4D and 2D spacetime respectively. The fieldX = Xµtµ is the vector
field in (‘isotopical’) Minkowski spacetimeE1,3; the fields9A with components9A

± are the
spinor fields in 2D space; indexA is the spinor index in the spaceE1,3 such that the fields9±
are the Majorana spinor fields in 4D spacetime. The numbers9A

± are complex numbers, so
there are no classical Grassmann variables in our action. The consideration of the spinning
string without the Grassmann variables is not new (see, for example, [13]). In our opinion
such an approach is justified here because the new fundamental variables will be complicated
functions from the original fieldsX and9.

To fix the gauge arbitrariness we demand, as usual,e
j

I = δ
j

I so thathij = diag(1,−1)
and the equations of motion can be written in their simplest form. For fieldsX and9 we have
∂−∂+Xµ = 0, ∂∓9± = 0. The equations of motionδS/δhij = 0 for gravityh lead, as is
well known, to the equalities

F1±(ξ) ≡ (∂±X)2 ± i2

2
9±∂±9± = 0 (2)

where∂± are derivatives with respect to cone parametersξ± = ξ1± ξ0. The remaining gauge
freedom [12]

ξ± −→ ξ̃± = ±A(±ξ±) (3)

must be fixed by means of additional conditions. For our subsequent consideration it is
important that the functionA(ξ) must satisfy the property

A(ξ + 2π) = A(ξ) + 2π A′ 6= 0

in accordance with the standard boundary conditions for original variablesX and 9:
X′µ(ξ

0, 0) = X′µ(ξ0, π) = 0, 9+(ξ
0, 0) = 9−(ξ0, 0) and9+(ξ

0, π) = ε9−(ξ0, π), where
ε = ±.

The original phase spaceH has the coordinateṡXµ ≡ ∂0Xµ,Xµ,9+A± and9A
± .As usual,

the canonical Poisson bracket structure is the following:

{Ẋµ(ξ),Xν(η)} = −4πα′gµνδ(ξ − η)
{9A+

±(ξ),9
B
±(η)} =

8π iα′

2
(00)ABδ(ξ − η).
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2. The additional gauge conditions and the adjunct phase space

The spinor variables give additional possibilities for constructing natural Poincaré-invariant
structures on the(ξ0, ξ1)-plane†. For example, we can construct the following two-tensor:

�ij (ξ
0, ξ1) = 1

2(himhjn + hinhjm − hijhmn)(000µ)AB9
A
γm9B∂nXµ.

Other objects can be constructed too. Detailed investigations of these structures and the
geometrical properties of the ‘extended’ world-sheet(ξ0, ξ1) → (Xµ(ξ

0, ξ1),9A
±(ξ±)) in

some complex space would probably be interesting, but lie outside the framework of this
paper. We include in our subsequent studies the string configurations(X, 9) which give the
positive-defined quadratic form�ij dξ i dξ j only. This demand means that two inequalities

±9±0µ9±∂±Xµ > 0 (4)

hold for any point(ξ0, ξ1). To destroy the gauge freedom (3) we select the string configurations
(X, 9) such that the conditions

F2±(ξ) ≡ 9±0µ9±∂±Xµ = ±κ
2

2
(5)

hold for any non-zero constantκ = κ[X,9]. Note that the equalities (5) are invariant both
under Poincaŕe and scale transformations of the spacetimeE1,3, so we assume that the resulting
theory will be attractive. Such invariance is the first motivation for the conditions (5). A second
is that the gauge (5) naturally generalizes the well known light-cone gauge in a string theory.
We discuss this in detail at the end of section 4.

It should be stressed that the restriction

κ[X,9] = q (6)

whereq is some fixed input parameter is not suitable for a complete theory. Indeed, the
different values of the constantκ correspond to different orbits of the gauge transformations
(3), so thatκ is a Teichm̈uller-like parameter. Consequently, the ‘strong’ restriction (6) will not
be grounded because the gauge transformations (3) were forbidden by the ‘weak’ conditions
(5) (discussion of this situation for general gauge systems can be found in [14]).

Note that the gauge (5) does not forbid the transformations (3) such thatA(ξ) ≡ ξ + c,
wherec = constant. Obviously, they give the shiftsξ0 → ξ0 + c, which correspond to
dynamics.

We are going to study the Poisson structure of the setV of string configurations
(X(ξ0, ξ1),9(ξ±))which are selected by the constraints (2) and ‘weak’ gauge conditions (5).
It is a non-trivial problem, because the variationδ(κ[X,9]) is not defined by the variations of
the coordinates of original phase space. Let us introduce the auxiliary minimal subspaceH1

such that, first, the inclusionV ⊂ H1 ⊂ H holds and, secondly, the Poisson structure onH1

is reduced unambiguously from the original phase spaceH. Such a subspace is given by the
equalities

F
(n)
i = 0 n 6= 0 i = 1, 2. (7)

The constantsF (n)i are Fourier modes of 2π -periodic functions

Fi(ξ) =
{
Fi+(ξ) ξ ∈ [0, π)

Fi−(−ξ) ξ ∈ [−π, 0)

† Not only the first and second quadratic form of the world-sheet is used, as in the case of bosonic string.
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which are well defined in accordance with the boundary conditions for the variablesX and9.
The canonical Poisson structure on original phase spaceH gives the following brackets:

{F ∗(n)1 , F
(n)
2 } = 8π iα′nF (0)2 .

BecauseF (0)2 = κ2/2 > 0 in our theory, the system (7) will be a second-type system of
constraints so that natural brackets on spaceH1 will be corresponding Dirac brackets{·, ·}1.
The conditionF (0)1 = 0 gives the reduction on setV ; obviously, codimV = 1. Analogously
with the example, considered in the introduction, we can select the various foliations

V = ∪
q2>0

V f
q (8)

where the setsV f
q ⊂ V can be defined both by the restriction (6) and any more complicated

conditions. As for the finite-dimensional case, any foliation (8) gives the Poisson structure on
the setV , which will be degenerate. Thus, the natural canonical structure of the original phase
spaceH does not have the unique reduction to the setV .

At first it seems that such indeterminacy can be ignored at the subsequent quantization.
Indeed, we can quantize the brackets{·, ·}1 and construct the corresponding Fock spaceH1.

After that we must select the physical vectors|ψ〉 ∈ H1 which will be the solutions of
the ‘Shr̈odinger equation’F (0)1 |ψ〉 = 0 [1]. In our opinion, the ambiguity in determination
of the Poisson structure of the manifoldV , which consists of all the physical information,
leads to additional possibilities for quantization. Indeed, let any spaceHad be any Poisson
manifold with the Poisson brackets{·, ·}0. Suppose that the finite number of some constraints
8i(. . .) = 0, i = 1, . . . , l give the first-type system of constraints:

{8i,8j }0 = Cijk8k.

Suppose, that for the surface of these constraintsW ⊂ Had: W = {M ∈ Had|8i = 0, i =
1, . . . , l.} the diffeomorphismV ≈W takes place†. Thus, we have the following diagram:

H1 ⊃ V ≈W ⊂ Had. (9)

We call any such spaceHad theadjunct phase space. From the classical viewpoint, the manifold
W is tantamount to the manifoldV , because it has the same information about the physical
degrees of the freedom. As discussed above, the single-defined Poisson structure is absent
both on the manifoldV and the manifoldW , which is why there is no reason to prefer one
to the other. Consequently, we can fulfil the subsequent quantization of the theory in terms
of the spaceHad. It should be stressed thatH1 6≈ Had in general as the Poisson manifolds,
even for casel = 1. This means that the results here can differ from the conventional ones.
The simplest example of adjunct phase space will be the manifoldD ∗H1, where symbolD∗
means any (not only Poisson) diffeomorphism. It is clear from the physical point of view.
Indeed, if we have both physical and non-physical coordinates in some phase space, there is
no reason to consider only Poisson-conserved transformations of such space. The suggested
definition of the spaceHad is more general, of course.

The main goal of this article is to construct the physically appropriate adjunct phase
space for the dynamical system (1) and discuss the quantization. In our opinion, there are
several reasons to refuse the description of string dynamics in terms of the spaceH1 (or the
original phase spaceH—it is equivalent). First, the standard approach leads to the additional
dimensions for spacetime while the existence of such dimensions is not proven experimentally.
Secondly, the conventional approaches (see, for example, [12]) lead, as is well known, to the
linear Regge trajectories for free strings such that the slopeα′ is input parameter in a theory.

† This diffeomorphism must be conserved in the dynamics.



The Poisson structure of a 4D spinning string 849

But the trajectoriess = α′µ2 + c, where the valueα′ ' 0.9 Gev−2 is the universal constant,
describe the spectrum of real particles well but only approximately. Indeed, the linearity
means that the width of any resonance is equal to zero; the universality of the slopeα′ is
connected with the absence of exotic particles [15]. We also now have stable experimental
data on hadronic exotics [16], some of which give direct information about Regge trajectories
with slopesαg 6= 0.9 Gev−2 [17]. As regards the form of the trajectory, the linear dependence
gives a good approximation for light-flavoured mesons and baryons only (see, for example
[18]). Moreover, the width of any real resonance does not equal zero, of course.

As can be seen, the construction of a 4D free string model, while taking into account
the small nonlinearity of the trajectories and the existence of the different slopes, can be very
interesting.

3. The world-sheet geometry

We will define next the adjunct phase spaceHad, the subsetW and construct the corresponding
diffeomorphismV ≈ W in accordance with diagram (9). The coordinates in the space
Had, which will be introduced in the following section, naturally fall into two groups: the
finite number of ‘external’ variables which are transformed as the tensors under the Lorentz
transformations of the spacetimeE1,3 and some ‘internal’ scalar variables. In order to define
these quantities, we consider in this section the geometrical construction which is quite natural
for the studied model. Some parts of the section will be analogous to corresponding parts in
[19, 20], so we give some formulae without detailed proof.

Let the constantκ be the constant existing for given fieldsXµ and9± in accordance with
the conditions (5). We introduce the tensors

L
µ
± =

1

κ
9±0µ9± G

µν
± =

i

2κ
9±(0µ0ν − 0ν0µ)9±

which carry the full information about Majorana spinors9± and satisfy the properties
LµG

µν = 0,LµLν = Gµ
ρG

ρν . After that we define the pair of vectorsNµ
± :

N
µ
± =

1

κ
∂±Xµ +

i2

2κ2
9±∂±9±L

µ
±.

According to the equalities (2) and (5) these vectors are light-like and satisfy the conditions

L
µ
±Nµ± = ± 1

2 . (10)

Let us define eight vectorseµ± µ = 0, . . . ,3.

(e0±)µ = Lµ± ±Nµ
± (e3±)µ = ±Lµ± −Nµ

±
(e1±)µ = ∓2Gµν

± N±ν (e2)
µ = εµνλρ(e3)ν(e0)λ(e1)ρ.

The direct verification allows us to state that these vectors give the pair of the orthonormal bases
in spaceE1,3 for every point(ξ0, ξ1) of the world-sheet. Furthermore, it is more convenient
to deal with the vector-matrices

E± = eµ±σµ σ0 = 1

than the baseseµ±. So, we defineSL(2, C)-valued chiral fieldK = K(ξ0, ξ1) by means of
the formula

E− = KE+K
+. (11)

The free equations of motion for the original fieldsXµ and9± lead to the ‘conservation laws’
∂±E∓ = 0. Consequently, we have the equation for chiral fieldK = K(ξ0, ξ1):

∂−(K−1∂+K) = 0. (12)
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There is a special case for the well known Wess–Zumino–Novikov–Witten equation [21, 22].
The left and right currents

Q− = −(∂−K)K−1 Q+ = K−1(∂+K)

for the defined chiral fieldK satisfy the equations∂∓Q± = 0. As can be proven with the
help of the boundary conditions for the original string variablesX and9, thesl(2, C)-valued
function

Q(ξ) =
{
Q+(ξ) ξ ∈ [0, π ]

−σ1Q−(−ξ)σ1 ξ ∈ [−π, 0]

is continuous and can be extended 2π -periodically and continuously throughout the real axis.
Let us consider the following auxiliary linear system with 2π -periodic coefficients:

T ′(ξ) +Q(ξ)T (ξ) = 0. (13)

This system plays a central role in our subsequent considerations. This role is conditioned
by the possibility of reconstruction of the original string variables∂±Xµ and9± through the
matrix solutionT (ξ) of the system (13).

Indeed, the chiral fieldK(ξ0, ξ1) can be written in the form [22]:

K(ξ0, ξ1) = T−(ξ−)T −1
+ (ξ+) (14)

for some matricesT± ∈ SL(2, C). Using the definition of the fieldK, we have the formulae

E±(ξ±) = T±(ξ±)E0T†
±(ξ±) (15)

whereE0 = tµσµ is the matrix representation of the stationary basistµ. In accordance with
the definition of matrixQ, we have the equalities

T+(ξ+) = T (ξ+) T−(ξ−) = iσ1T (−ξ−)
whereT (ξ) is matrix-solution of the system (13) such that condition detT = 1 holds. So,
we can reconstruct the vector matricesE±(ξ±) through the matrixT (ξ). If the constantκ
is given, we can reconstruct the original string variables too. Thus the following one-to-one
correspondence takes place:

V /E1,3 ≈ (T (ξ), κ) (16)

where asE1,3 we denote the group of the translationsX → X +A. The evident formulae for
the reconstruction of the original string variables can be deduced analogously just as in [20]†.
For example, we have for the matrices∂±X̂(ξ±) ≡ ∂±Xµσµ:

∂±X̂(ξ±) = ±T +(±ξ±)R(±ξ±)T (±ξ±) (17)

where the matrixR(ξ) = diag(κ,−22ReQ21(ξ)). If we select the Weyl representation for
0-matrices, the explicit expressions for reconstructed spinors are quite simple:

9± =
√
κ

(
ϕ±
−σ2ϕ

∗
±

)
(18)

whereϕ±(ξ±) =
(
t21(±ξ±)
t22(±ξ±)

)
are the Weyl spinors which were expressed in terms of the elements

tij of the matrix solutionT (ξ).
We conclude this section with the following important statement [19]. The boundary

conditions for original variablesX and9 are fulfilled, if the equality

M1(Q) = ε1 (19)

† It is important that the resulting dependence from the ‘variable’κ differs here from the dependence in [20].
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holds for the monodromy matrixM1 of the system (13) defined in accordance with the equality
T (ξ + 2π) = T (ξ)M1.

Thus the variables∂±Xµ and9±, constrained by the conditions (2) and (5), can be
reconstructed through the matrixT—the matrix soluton of the linear 2π -periodic system (13).
Moreover it is need that the coefficientsQij of this system are constrained by equality (19).

4. The topological charge and the definition of spaceH1

In this section we determine the adjunct phase space for the dynamical system (1). The starting
point of our subsequent consideration is the correspondence (16). Note that the matrix solution
T (ξ) is defined up to within the transformations

T (ξ) −→ T̃ (ξ) = T (ξ)B
where constant matrixB ∈ SL(2, C). It is clear from the formulae (17) and (18) that these
transformations are the Lorentz transformations of spacetimeE1,3.Thus we can write for every
solution of the system (13):

T (ξ) = T0(ξ)B1(q1, . . . , q6) (20)

where the valuesqi parametrize the groupSL(2, C) somehow or other and the matrixT0 is
defined from the functionsQij (ξ) in some unique manner. In order to give the corresponding
definition of the matrixT0, let us fulfil the Iwasawa expansion for the matrix solutionT (ξ):

T = NEU
whereU ∈ SU(2) and the matricesE andN are the following:

E = diag(ed, e−d) N =
(

1 f

0 1

)
.

After that we define the functionsja = ja(ξ), a = 1, 2, 3:

ja = −i Tr σa[G−1QG + G−1G ′]
whereG = NE . Then the matrixU satisfies the following linear system:

U ′ +
i

2

( 3∑
a=1

σaja

)
U = 0. (21)

BecauseU ∈ SU(2), the functionsja(ξ) are the real functions. It is more convienent to replace
the function d(ξ), which defines the matrixE , with the functionj0(ξ) ≡ d′(ξ) and the constant
d0 = d(0).

We postulate the following six conditions to fix the matrixT0:∫ 2π

0
f (ξ) dξ = 0 d0 = 0 U(0) = 1.

Thus we define four real(ja) and one complex(f ) function such that the correspondence
Q ↔ (ja; f ) is one-to-one. Let us rewrite the condition (19) in terms of the introduced
functions. So, the matrixT0(ξ) will be 2π -periodic if the functionsf (ξ), j0(ξ) are periodic
and the equalities∫ 2π

0
j0(ξ) dξ = 0 U(ξ + 2π) = εU(ξ)

hold. The last equality means that the monodromy matrixM for the linear system (21) satisfies
the condition

M = ε1.
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This constraint on the variablesja leads to the appearance of the topological chargen in our
model. Indeed, let us consider the spectral task

U ′ +
iλ

2

( 3∑
a=1

σaja

)
U = 0.

Condition (21) holds if and only if this task has a pointλn = λn[ja] of the periodic or
antiperiodic spectrum such thatλn = 1 for a certain numbern. The equivalent form of this
condition is the following:

8m
1 ≡ arccos( 1

2 TrM)− πm = 0. (22)

Thus we state the one-to-one correspondence

V /E1,3 ≈ (f (ξ), j0(ξ), . . . , j3(ξ); q1, . . . , q6; κ). (23)

The whole numbern is the topological charge in our theory; the continuous deformation of
the string configuration(f (ξ), . . .) for somen into the configuration(f (ξ), . . .) with other
numberm breaks either boundary conditions or gauge (5).

Our next step is to define six parametersqi according to the representation (20). Moreover,
we must to add four constantsZµ for the reconstruction of the variablesXµ from the derivatives
∂±Xµ. Let us consider the usual Noether expressions for the energy–momentumPµ and the
momentMµν :

Pµ = 1

4πα′

∫ π

0
Ẋµ dξ1

Mµν = 1

4πα′

∫ π

0
(XµẊν −XνẊµ) dξ1− i2

8πα′
∑
ε=±

∫ π

0
9ε(0µ0ν − 0ν0µ)9ε dξ1.

Let wµ = − 1
2εµνλσM

νλP σ . In accordance with the formulae (17) and (18) we have the
equalities:

(P )2 =
(

2

4πα′

)2 2∑
l=0

( κ
2

)l
Dl (24)

(w)2 = 26

(4πα′)4

6∑
l=0

( κ
2

)l
Fl. (25)

It is important that the coefficientsDl andFl in the polynomials (24) and (25) depend on the
functionsf (ξ) andja(ξ) only. This fact means that these formulae give theκ-parametric form
of ‘constraint’

82(P
2, w2; f, j0, . . . , j3) = 0. (26)

The main idea is to use the componentsPµ andMµν as additional variables instead of the
constantsZµ, qi andκ. The exact statement is as follows.

Corollary 1. Let a two-parametric groupG2 be composed from the transformations:
(1) rotationsXµ→ 3ν

µ(φ)Xν in the space-like plane which is orthogonal with the vector
Pµ and pseudo-vectorwµ;

(2) translationsXµ→ Xµ + cPµ.
Then, if the quantitiesf (ξ), ja(ξ) (a = 0, . . . ,3), Pµ andMµν are constrained by the

equalities (22) and (26), the diffeomorphism

V /G2 ≈ (f (ξ), j0(ξ), . . . , j3(ξ);Pµ,Mµν)

takes place.
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The sketch of the proof is as follows. Let the auxiliary vector fieldX(0) and the spinor
fields9(0)± be defined from the variablesf (ξ) andja(ξ) with the help of formulae (17) and
(18), where the replacementT (ξ) → T0(ξ) has been fulfilled. We next define the vector
P(0)µ and pseudo-vectorw(0)µ by means of the replacementX → X(0) and9± → 9(0)± in
the correspondent Noether expressions. LetPµ be an arbitrary time-like vector andMµν

an arbitrary antisymmetrical tensor. Then, if the constraint (26) takes place, the matrix
B ∈ SL(2, C) exists such that the equalities

P̂ = B+P̂(0)B ŵ = B+ŵ(0)B

hold. That is why we can reconstruct the matrixT = T0B. Moreover, we can restore the
integration constantsZµ because the full momentMµν consists of the information about
the centre of mass of the string. Consequently, the original string variablesX and9± can
be restored from the variablesf, ja, Pµ andMµν . More detailed investigations show that
this reconstruction will be smooth and that two-parametric arbitrariness exists, so that the
corresponding cosets appear.

To describe the degrees of freedom connected with the groupG2, we introduce the
additional coordinatesq andθ , such that−∞ < q < ∞ andθ ∈ [0, 2π ]. Now we give
the straightforward definition of the adjunct phase spaceHad for the considered string model.
This is a manifold such that any pointM ∈ Had has the following coordinates: (1) 2π -periodic
complex functionf (ξ) without zero mode; (2) 2π -periodic real functionsja(ξ) (a=0,1,2,3)
such that the functionj0 has not zero mode; (3) 4-vectorPµ such that the inequalityP 2 > 0
holds; (4) antisymmetrical tenzorMµν ; (5) four additional coordinatesq, θ , p andχ . Let us
define the Poisson brackets

{f (ξ), f (η)}0 = α′

22
δ′(ξ − η) {j0(ξ), j0(η)}0 = −2

α′

22
δ′(ξ − η)

{ja(ξ), jb(η)}0 = 2
α′

22
(−δabδ′(ξ − η) + εabcjc(ξ)δ(ξ − η))

wherea, b, c = 1, 2, 3, andδ(ξ) =∑n einξ

{Mαβ,Mγδ}0 = gαδMβγ + gβγMαδ − gαγMβδ − gβδMαγ

{Mαβ, Pγ }0 = gβγ Pα − gαγ Pβ
{p, q}0 = 1 {χ, θ}0 = 1.

(The other possible brackets are equal to zero.) With respect to the defined brackets the space
Had is the Poisson manifold.

The manifoldW is defined as follows. First we require that the equalities

83 ≡ p = 0 84 ≡ χ = 0

hold. As8n
1 we denote the constraint (22) for some topological numbern. Let the set

Wn ⊂ Had be the surface of the constraints8i, i = 1, . . . ,4, where82 = 8n
2. Then,

W = ∪
n∈Z

Wn.

Corollary 2. The constraints8i = 0, i = 1, . . . ,4 will be first-type constraints with respect
to the brackets{·, ·}0.

Indeed,{8i,8j } = 0 for i = 1, 2 andj = 3, 4, or i = 3 andj = 4. Let us prove that
{81,82} ∝ 81. We first note that the matrixM depends on the variablesja, a = 1, 2, 3 only.
Let us calculate the brackets of the matrix elements of the matricesMandQg = (i/2)

∑
a jaσa.

The identity

{(U ′(ξ) +Qg(ξ)U(ξ))⊗,M}0 ≡ 0
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holds on spaceHad, therefore we can apply for such calculations the Leibniz rule{AB,C}0 =
A{B,C}0 + {A,C}0B and the definition of the matrixM. As result we have the equality

{Qg(ξ)⊗,M}0 = [1⊗M, C(ξ)]

where the square brackets denote the commutator 4× 4 matrices. The explicit form of the
matrixC(ξ) is not important here because it is clear that ifM ∝ 1, then{Qg(ξ)⊗,M}0 ≡ 0.
Consequently, we have

{81, A}0 ∝ 81

for arbitrary functionA = A(f, ja;Pµ,Mµν; q, θ), so that the corollary is proven.
The dynamical equations

{H0, Xµ}0 = ∂Xµ

∂ξ0
{H0, 9±}0 = ∂9±

∂ξ0

hold for the Hamiltonian

H0 = 22

2πα′

(∫ 2π

0
|f (ξ)|2 dξ + 1

4

3∑
a=0

∫ 2π

0
j2
a (ξ) dξ

)
.

These formulae can be proven with help of the representation (17) and (18) for original string
variablesXµ, 9± and with help of the obvious equalities

{H0, ja}0 = j ′a {H0, f }0 = f ′ {H0, Pµ}0 = {H0,Mµν}0 = 0.

It can be verified directly that all constraints in our theory are coordinated with dynamics.

Remark. It is clear that the brackets of the variablesPµ andMµν are motivated by Poincaré
algebra. Consequently, we have two annulators here:PµP

µ andwνwν . But every Poisson
structure{·, ·}must be coordinated with the tensor property of all considered functions. So, for
instance, the equality{Pµ,Aν} = gµν must hold for any 4-vectorAµ in order for the dynamical
variablesPµ to generate Poincaré translations. In our theory the integration of formula (17)
gives the expression for the radius vectorXµ(ξ

0, ξ1):

X̂(ξ0, ξ1) = Ẑ +
ξ0 + q

π
P̂ − i

π

∑
n6=0

Ĉn

n
einξ0

cosnξ1

where

Ĉn =
∫ 2π

0
T †(x)R(x)T (x)e−inx dx

andZµ = MµνP
ν/P 2. Therefore, we have the brackets

{Pµ,Xν}0 = gµν − PµPν
P 2

which are coordinated with the fact that functionP 2 will be an annulator. This means that for
every constant 4-vectorbµ the following formula applies:

eb
µ{Pµ,...Xν = Xν + bν −

(
bρP

ρ

P 2

)
Pν.

Thus, with respect to the defined brackets, the variablesPµ will generate the Poincaré
translations on the corresponding cosets only. The same situation holds for the rotations,
mentioned in the definition of the groupG2. The additional constraints83 and84 allow us to
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reconstruct the correct coordination of the introduced Poisson brackets with translations and
rotations. Indeed, let us consider the Lie operator

Lµ(P ) = {Pµ, . . . + π P
µ

P 2
{83, . . .

instead of the conventional operator of translation{Pµ, . . . . In accordance with the definitions
of the variableq and the constraint83, the equality

eaµL
µ(P )Xν = Xν + aν

holds. Analogously, Lie operator{Mµν, . . . must be improved by means of adding the term
with the operator{84, . . . .

Let us discuss the quantization of the suggested model. We surmise that the structure of
the fundamental Poisson brackets algebraAcl gives some information about the constructed
space of the quantum states. In our model this algebra has the form

Acl = Aint ⊕ P
whereAint the Poisson brackets algebra of the ‘internal’ variablesf (ξ), ja(ξ) andP is the
Poincaŕe algebra. It should be emphasized that the energy–momentum and moment of the
string (1) are independent fundamental variables, so there are no problems with the quantum
ordering when we construct the quantum generators of Poincaré transformations.

The defined new variables are complicated functions from the original fieldsX and9,
which is why the correct introduction of quantum fermionic fields is not so obvious here. The
following proposition clarifies this [20].

Corollary 3. The equalities9A
±(ξ) ≡ constant hold if and only if the equalitiesja(ξ) ≡ 0 for

a = 0, . . . ,3 take place.

This statement means that, in spite of the complicated dependence of the variablesf andja
on the original variablesXµ and9, the bosonic and fermionic degrees of freedom are still
non-mixed. It is natural to fulfil the quantization of the variablesja in terms of the fermionic
fields with the help of the bosonization procedure [22]. Thus the natural Hilbert space of the
of the quantum states of the string will be the following:

H ⊕
l,i,s
(Hb ⊗Hf ⊗Hµ2

i ,s
)

where the spacesHµ2,s are the spaces of irreducible representations of Poincaré algebraP,
labelled by the eigenvalues of the Casimir operatorsPµPµ andwµwν ; Hb—the Fock space
of two-dimensional bosonic field in the ‘box’ andHf—the Fock space of two-dimensional
fermionic field in the ‘box’. The corresponding physical vectors of states must be selected
with the help of the ‘Schr̈odinger equations’

8i |ψphys〉 = 0

where8i are the quantum expressions for considered constraints.
The other consequence of this corollary is that the suggested theory can be considered

as the new spinning generalization of the standard bosonic string model with the light-cone
gauge. Indeed, the standard light-cone gauge for bosonic string can be written in the form

nµ∂±Xµ = ±p+/2 (27)

where light-like vectornµ are selected usually as(1, 0, 0, 1). In our case both spinors9± are
Majorana spinors in 4D spacetime, so the vectorsn

µ
± = 9±0µ9± will be light-like always.

The reductionja ≡ 0 means that these vectors are constant. Moreovern
µ
+ = nµ− in accordance

with the usual boundary conditions for the spinor variables. Therefore, we have the theory
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with the gauge (27) where the light-like vectornµ is constant, but arbitrary. If we require
2 = 0, the action (1) takes the standard bosonic form. The real and imaginary parts of the
functionsf (±ξ±) will be the (well known) transversal components for vectors∂±X. With
respect to the formulae (5)

�ij dξ i dξ j ∝ κ2[(dξ+)
2 + (dξ−)2]

so this form has a good limit when2→ 0. In spite of this fact, we assume that the two-metric
�ij is not a natural object for the bosonic case2 = 0, because the spinor variables are absent
here. This case was studied recently in [23], where both classical and quantum versions of the
model were investigated in detail. As a result, we have Regge trajectories ¯h

√
s(s + 1) = αnµ2,

where the slopesαn, n = 1, 2, . . . are the eigenvalues for some spectral task in the space of
quantum states. The caseja ≡ 0, but2 6= 0 is quite similar technically, but is more interesting,
because it leads to more complicated trajectories.

Note that we can fulfil some unusual reductionf ≡ 0 in our model which corresponds
to the string, where all bosonic degrees of freedom are ‘frozen’. Previous investigation of
this case was made in [19], where the quantization was discussed too. This case is more
complicated because of the (non-trivial) topological condition (22). The author hopes to study
the general quantum case in the future.

5. Concluding remarks

In this paper we have suggested a new concept of adjunct phase space to investigate the
open spinning string. It should be stressed that the suggested approach leads to 4D covariant
theory both in the classical and in the quantum cases. The main result is a new non-trivial
Regge spectrum which can be applied in our opinion to the description of exotic particles.
The dependenceJ = J (P 2), where the spinJ =

√
w2/P 2, can already be analysed on the

classical level with the help of formulae (24) and (25). It will be essentially nonlinear for small
masses although for largeP 2 we have the asymptoticsJ ∝ P 2 +O(

√
P 2).

Let us note that we have two fundamental constants in the theory:α′ and2. Because
the spinor part of the action (1) vanishes on the equations of motion, the constant2 can
be introduced into the model not as a fixed constant but as an additional variable. Previous
investigation of the theory with the original configuration space(X,9;2) instead of the space
(X,9) was fulfilled in [19, 20]. It should be stressed that such extension leads to the scale-
invariant theory if we define the scale transformations as(X,9;2)→ (aX,

√
a9; a2). As

a natural result, here the linear dependenceJ ≡ √s(s + 1) = αnµ2 was deduced: we have the
set of Regge trajectories with zero intercepts but with various slopesαn. We considered the
value2 as constant not as variable in this work. Because the scale invariance is broken in this
case the resulting Regge spectrum is more complicated than the spectrum in [19, 20]. Note
that models of bosonic strings with non-standard spectrum were last suggested in [24, 25].

It is known that the slopeα′ of the Regge trajectory can be connected with the tensionτ

of the string:α′ ∝ 1/τ . If the tension is constant and there are no other internal forces, the
slope will be constant too. Thus the complicated form of the Regge trajectory bears a relation,
probably, to some additional internal forces within the string. Note that models where spinning
degrees of freedom were connected with distributed charges and currents were investigated
early on (see, for example, [26]). It appears that such an interpretation is possible in our case
too. The interesting thing here is that the model has topological chargen which vanishes if
the fermionic variables disappear.
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