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Abstract. A model of a 4D open string with non-Grassmann spinning variables is considered.
The nonlinear gauge, which is invariant under both Poimead scale transformations of spacetime,

is used for subsequent studies. Itis shown that the reduction of the canonical Poisson structure from
the original phase space to the surface of constraints and gauge conditions gives the degenerated
Poisson brackets. Moreover itis shown that such a reduction is non-unique. The concept of adjunct
phase space is introduced. The consequences for subsequent relativistic invariant quantization are
discussed. Deduced dependence of ggirom the square of mags of the string generalizes the
‘Regge spectrum’ for conventional theory.

1. Introduction

The investigation of constrained dynamical systems started by Dirac [1] has continued in
connection with gauge theory development. These studies have taken many directions; one
being the modification of the conventional phase space concept (see, for example, [2]). In this
paper, we suggest a new viewpoint on the phase space for some kinds of gauge systems and
apply the suggested concept to an investigation of 4D string dynamics.
We start our study with the following simple example. Let the spage be the

phase space of any dynamical system wittdegrees of freedom; any poiM € Hy has
the coordinates, q1, . . ., py, gy Which diagonalize the standard non-degenerated Poisson
brackets: {p;, q;} = 8ij, {pi, pj} = {gi.q;} = 0. Let us consider the subs&t C Hy:

={M € Hy | p1 =0, g1 > 0}. What is the Poisson structure of the & It is clear that
such a structure must be degenerated because todir. The simplest foliation of the set
V will be the following:

V = UeoV?

where setV® = {M € Hylp1 = 0, g1 = ¢, (c = constant}. It is well known that the
‘correct’ brackets for any set® will be the Dirac bracket$., -}1 for the pair of (second type)
constrainty; = 0,¢1 — ¢ = 0. This bracket structure can be naturally extended oivséte
function fp = ¢1 will be an annihilator. The interesting fact is that the constructed brackets are
non-unique. Indeed, we can introduce the other foliation of th& sét = UC>OVCf, where the
subsetsl/ ={M € Hylp1 =0, f(q1; 92, p2,...) = ¢, (c = constan)} were defined with

the help of some appropriate functighsuch that condition O< < oo holds. Itis clear

that the corresponding Dirac brackéts } ; differ from the bracketz{; -}1; the annihilator for

the new brackets is the functigh Thus, the reduction of the same Poisson structure from the
original phase spack,y on some subsét C Hy can be ambiguous if the reduced brackets
are degenerate. In general, the situation is the same if we consider the system of the first type
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of constraintsfi, ..., fi, wherek < N, instead of the single ong; = 0. Of course, this
example is a special case of the general theory of degenerated Poisson brackets [3]. It was
discussed in detail because the goal of our subsequent studies is to investigate this effect in
string theory.

A satisfactory version of the 4D quantum (super)string has been the aim of the theoretical
studies of many authors (see, for example, [4-8]). Moreover, many authors have constructed
theories in arbitrary (non-critical) spacetime dimensions [9-11]. Of course, this list is
incomplete: a detailed review is impossible here. Our suggested approach differs, to our
knowledge, from others because it is founded on a new concept of adjunct phase space.

We consider the following model here. Let the fiekls(£°, £1) andWw# (£°, £1) interact
with two-dimensional gravity,; (£°, 1), whereg?® € [0, 7] andé® € (—oo, 00), such that the
dynamics is defined by the action constructed in accordance with the well-investigated manner
[12]:

1
4o

S =— / de®de*/—n{nV 9, X"9; X, — i@e-;(ro)ABEAy,v’qu}. (1)

The notations are the following: = det(h'/), the vectors) (£, 1) are the vectors of
2D basis such that the equalitie8 = ¢/} take place and the matricé¥' andy; are the
Dirac matrices in the 4D and 2D spacetime respectively. The Kelg X, t* is the vector
field in (‘isotopical’) Minkowski spacetime; 3; the fieldsw# with componentst# are the
spinor fields in 2D space; indeX s the spinor index in the spadg 3 such that the field9/,.
are the Majorana spinor fields in 4D spacetime. The numi¥érare complex numbers, so
there are no classical Grassmann variables in our action. The consideration of the spinning
string without the Grassmann variables is not new (see, for example, [13]). In our opinion
such an approach is justified here because the new fundamental variables will be complicated
functions from the original fieldX andw. A ‘

To fix the gauge arbitrariness we demand, as usgiak: §; so thath;; = diag(1, —1)
and the equations of motion can be written in their simplest form. For fiéldsd¥ we have
9-9+X, =0, 9+Wy = 0. The equations of motiofS/5h"/ = O for gravity # lead, as is
well known, to the equalities

o
Fia(€) = (0:X)2 % 'Ewiaiwi —0 @)

whered.. are derivatives with respect to cone paramejgrs: £* + £°. The remaining gauge
freedom [12]

fr —> & = HA(HEL) €)
must be fixed by means of additional conditions. For our subsequent consideration it is
important that the functior (§£) must satisfy the property
A(E+271) = A(E) + 21 A £0
in accordance with the standard boundary conditions for original varialfleend W:
X,’L(SO, 0 = X,Q(EO, m) =0, V(52,00 = W_(£%,0) and W, (£°, ) = eW_(£°, ), where
€ ==.
The original phase spaé¢has the coordinates, = 3,X,,, X,,, ¥**. andw#. As usual,
the canonical Poisson bracket structure is the following:

{(X,(6), X,(n)} = —4na'g,,6(¢ — 1)

+ 8ria’
(WA &), W () = %W(FO)ABS(S — .
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2. The additional gauge conditions and the adjunct phase space

The spinor variables give additional possibilities for constructing natural P&noeariant
structures on thé©, £1)-planet. For example, we can construct the following two-tensor:

A m n
Qij (€%, &Y = F(himhju + hinhjm — Bijhmn) (COT*) 4 g Wy " 020" X,

Other objects can be constructed too. Detailed investigations of these structures and the
geometrical properties of the ‘extended’ world-sh&gt, £1) — (X, (g0, &Y), Wi (&y)) in

some complex space would probably be interesting, but lie outside the framework of this
paper. We include in our subsequent studies the string configurafdong) which give the
positive-defined quadratic for@;; d¢’ d&/ only. This demand means that two inequalities

:I:WiF"lIJiaiX,L >0 (4)

hold for any point£°, £1). To destroy the gauge freedom (3) we select the string configurations
(X, ¥) such that the conditions

K2
5 (5)
hold for any non-zero constarnt= «[X, ¥]. Note that the equalities (5) are invariant both
under Poinca and scale transformations of the spacetfing, so we assume that the resulting
theory will be attractive. Such invariance is the first motivation for the conditions (5). A second
is that the gauge (5) naturally generalizes the well known light-cone gauge in a string theory.
We discuss this in detail at the end of section 4.

It should be stressed that the restriction

KX, V] =g¢ (6)

For(8) = W I, 0. X, =+

wheregq is some fixed input parameter is not suitable for a complete theory. Indeed, the
different values of the constamtcorrespond to different orbits of the gauge transformations
(3), sothak is a Teichnilller-like parameter. Consequently, the ‘strong’ restriction (6) will not

be grounded because the gauge transformations (3) were forbidden by the ‘weak’ conditions
(5) (discussion of this situation for general gauge systems can be found in [14]).

Note that the gauge (5) does not forbid the transformations (3) suclithat= & + ¢,
wherec = constant. Obviously, they give the shi§8 — £° + ¢, which correspond to
dynamics.

We are going to study the Poisson structure of the ¥8ebf string configurations
(X (&9, &%), W(£L)) which are selected by the constraints (2) and ‘weak’ gauge conditions (5).
Itis a non-trivial problem, because the variatitir[ X, W]) is not defined by the variations of
the coordinates of original phase space. Let us introduce the auxiliary minimal subigpace
such that, first, the inclusioW C H; C H holds and, secondly, the Poisson structuré<qn
is reduced unambiguously from the original phase sgacBuch a subspace is given by the
equalities

F" =0 n#0 i=12 (7)
The constant#™ are Fourier modes of2periodic functions

Fi+(§) §€l0,m

E =
© { F(-§  §e[-7,0

T Not only the first and second quadratic form of the world-sheet is used, as in the case of bosonic string.
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which are well defined in accordance with the boundary conditions for the varigldes .
The canonical Poisson structure on original phase spagi®es the following brackets:

{(F{", F{"} = 8ria'nF}°.

Becauser(O) = «?/2 > 0 in our theory, the system (7) will be a second-type system of
constraints so that natural brackets on sgdgavill be corresponding Dirac brackets -};.
The conditionFl(O) = 0 gives the reduction on s&f; obviously, codin¥’ = 1. Analogously
with the example, considered in the introduction, we can select the various foliations
V=uVv/ (8)
q*>0

where the sethf C V can be defined both by the restriction (6) and any more complicated
conditions. As for the finite-dimensional case, any foliation (8) gives the Poisson structure on
the sefV/, which will be degenerate. Thus, the natural canonical structure of the original phase
spaceH does not have the unique reduction to theset

At first it seems that such indeterminacy can be ignored at the subsequent quantization.
Indeed, we can quantize the brackgts}; and construct the corresponding Fock spate
After that we must select the physical vectoys) € H; which will be the solutions of
the ‘Shiddinger equationFl(O)hp) = 0 [1]. In our opinion, the ambiguity in determination
of the Poisson structure of the manifdld, which consists of all the physical information,
leads to additional possibilities for quantization. Indeed, let any spé&€de any Poisson
manifold with the Poisson brackefs -}°. Suppose that the finite number of some constraints
®;(...)=0,i =1,...,1give the first-type system of constraints:

{®:, @;)° = Cij Py

Suppose, that for the surface of these constrawits H*: W = (M € Hd; =0, i =
1, ..., 1.} the diffeomorphisnV ~ W takes placet. Thus, we have the following diagram:

HiDV AW CHM 9)

We call any such spad¢® theadjunct phase spacé&rom the classical viewpoint, the manifold

W is tantamount to the manifol¥f, because it has the same information about the physical
degrees of the freedom. As discussed above, the single-defined Poisson structure is absent
both on the manifold” and the manifold4”, which is why there is no reason to prefer one

to the other. Consequently, we can fulfil the subsequent quantization of the theory in terms
of the spacer®”. It should be stressed that; % #2 in general as the Poisson manifolds,

even for casé = 1. This means that the results here can differ from the conventional ones.
The simplest example of adjunct phase space will be the manifald{,, where symbolbD

means any (not only Poisson) diffeomorphism. It is clear from the physical point of view.
Indeed, if we have both physical and non-physical coordinates in some phase space, there is
no reason to consider only Poisson-conserved transformations of such space. The suggested
definition of the spac@(®is more general, of course.

The main goal of this article is to construct the physically appropriate adjunct phase
space for the dynamical system (1) and discuss the quantization. In our opinion, there are
several reasons to refuse the description of string dynamics in terms of thet¢pémethe
original phase spac¥—it is equivalent). First, the standard approach leads to the additional
dimensions for spacetime while the existence of such dimensions is not proven experimentally.
Secondly, the conventional approaches (see, for example, [12]) lead, as is well known, to the
linear Regge trajectories for free strings such that the sidjeinput parameter in a theory.

T This diffeomorphism must be conserved in the dynamics.
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But the trajectories = o’uu? + ¢, where the value’ ~ 0.9 Gev 2 is the universal constant,
describe the spectrum of real particles well but only approximately. Indeed, the linearity
means that the width of any resonance is equal to zero; the universality of theoSligpe
connected with the absence of exotic particles [15]. We also now have stable experimental
data on hadronic exotics [16], some of which give direct information about Regge trajectories
with slopesy, # 0.9 Gev2[17]. As regards the form of the trajectory, the linear dependence
gives a good approximation for light-flavoured mesons and baryons only (see, for example
[18]). Moreover, the width of any real resonance does not equal zero, of course.

As can be seen, the construction of a 4D free string model, while taking into account
the small nonlinearity of the trajectories and the existence of the different slopes, can be very
interesting.

3. The world-sheet geometry

We will define next the adjunct phase spat¥, the subseW and construct the corresponding
diffeomorphismV =~ W in accordance with diagram (9). The coordinates in the space
H?29, which will be introduced in the following section, naturally fall into two groups: the
finite number of ‘external’ variables which are transformed as the tensors under the Lorentz
transformations of the spacetinig 3 and some ‘internal’ scalar variables. In order to define
these quantities, we consider in this section the geometrical construction which is quite natural
for the studied model. Some parts of the section will be analogous to corresponding parts in
[19, 20], so we give some formulae without detailed proof.

Let the constant be the constant existing for given fields, andW.. in accordance with
the conditions (5). We introduce the tensors

1 i
Ly = ;\pirwi GY' = g\Lfi(rﬂr“ — 'YW,

which carry the full information about Majorana spino#s. and satisfy the properties
L,G" =0,L"L" = G4G*". After that we define the pair of vectong; :

N = %aixﬂ + ZIK—@)ZWiBi\PiLi-
According to the equalities (2) and (5) these vectors are light-like and satisfy the conditions
LiN,. = £3. (10)
Let us define eight vectoks,. © =0, ..., 3.
(eor)" = LY + NI (eas)" = £LY — N¥
(ex)" = F2GY Ny, (€)™ = & (e3),(€0) (e1),-

The direct verification allows us to state that these vectors give the pair of the orthonormal bases
in spacekE 3 for every point(£°, &) of the world-sheet. Furthermore, it is more convenient
to deal with the vector-matrices

E. = eiau op=1
than the bases, .. So, we defineSL (2, C)-valued chiral fieldk = K (£°, £%) by means of
the formula

E_=KE.K". (11)
The free equations of motion for the original fieldg andW.. lead to the ‘conservation laws’
3+ E- = 0. Consequently, we have the equation for chiral figle= K (£°, £1):

d_(K'9,K) =0. (12)
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There is a special case for the well known Wess—Zumino—Novikov—Witten equation [21, 22].
The left and right currents
Q- =-0-K)K™*  Q.=K"(0:K)

for the defined chiral fielX satisfy the equation8: Q. = 0. As can be proven with the
help of the boundary conditions for the original string varialXeandw¥, thes! (2, C)-valued
function

Q+(&) § €0, 7]
—010_(=§)oy §e[-n.0]
is continuous and can be extended geriodically and continuously throughout the real axis.
Let us consider the following auxiliary linear system witih-periodic coefficients:
T'(E)+0E)TE) =0. (13)

This system plays a central role in our subsequent considerations. This role is conditioned
by the possibility of reconstruction of the original string variatlex,, andW, through the
matrix solutionT (¢) of the system (13).

Indeed, the chiral fiel& (£°, £1) can be written in the form [22]:

(&) =i

K% EH =T (E)TTHE) (14)
for some matriced. € SL(2, C). Using the definition of the fiel&, we have the formulae
By (k) = To(E0) EoTL (Ex) (15)

whereEy = t"o, is the matrix representation of the stationary basisin accordance with
the definition of matrixQ, we have the equalities

T:(5+) = T(8+) T_(§-) =ioaT(=§-)

whereT (¢) is matrix-solution of the system (13) such that conditionXet 1 holds. So,

we can reconstruct the vector matricBs (£1) through the matrix'(¢). If the constantk

is given, we can reconstruct the original string variables too. Thus the following one-to-one
correspondence takes place:

V/E13 = (T(§),k) (16)

where ag£1 3 we denote the group of the translatiois— X + A. The evident formulae for
the reconstruction of the original string variables can be deduced analogously just as in [20]t.
For example, we have for the matric&sX (§1) = 9. X" o),

0. X (51) = +T* () R(HEL) T (£52) 17

where the matrixR (§) = diagk, —20ReQ,1(£)). If we select the Weyl representation for
I'-matrices, the explicit expressions for reconstructed spinors are quite simple:

%:ﬁ( v ) (18)

—020%

wheregp. (£1) = (gﬁgi;) are the Weyl spinors which were expressed in terms of the elements
t;; of the matrix solutior” &).
We conclude this section with the following important statement [19]. The boundary

conditions for original variableX andW are fulfilled, if the equality
Ma(Q) =€l (19)

T Itis important that the resulting dependence from the ‘variabidiffers here from the dependence in [20].
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holds for the monodromy matrix1; of the system (13) defined in accordance with the equality
T +2r) =T (@) M.

Thus the variable$, X,, and ¥, constrained by the conditions (2) and (5), can be
reconstructed through the matfix—the matrix soluton of the linear2periodic system (13).
Moreover it is need that the coefficients; of this system are constrained by equality (19).

4. The topological charge and the definition of spact(;

In this section we determine the adjunct phase space for the dynamical system (1). The starting
point of our subsequent consideration is the correspondence (16). Note that the matrix solution
T (¢) is defined up to within the transformations

T¢) — T =T)B
where constant matri8 € SL(2, C). It is clear from the formulae (17) and (18) that these

transformations are the Lorentz transformations of spacdiijaeThus we can write for every
solution of the system (13):

T (§) =To(§)B1(q1, -, qe) (20)
where the valueg; parametrize the groufL (2, C) somehow or other and the matri is
defined from the functiong;;(¢) in some unique manner. In order to give the corresponding
definition of the matrixXZy, let us fulfil the lwasawa expansion for the matrix solutio¢s):

T =NEU
wherel/ € SU(2) and the matrice§ and\ are the following:

& = diage?, e™?) N = (é Ji)

After that we define the functiong = j,(§),a = 1,2, 3:
Jo=—iTro 610G +G'G]
whereG = NE. Then the matrix/ satisfies the following linear system:

: 3
/ I .
u+§<zd%h)uzo. (21)

Becausé/ € SU(2), the functiongj, (¢) are the real functions. Itis more convienentto replace
the function d¢), which defines the matri&, with the functionjo (&) = d'(¢) and the constant
do = d(0).

We postulate the following six conditions to fix the matfig

21
A f(&)dg =0 do=0 UWO) = 1.

Thus we define four realj,) and one complexf) function such that the correspondence
O < (ja; f) is one-to-one. Let us rewrite the condition (19) in terms of the introduced
functions. So, the matri%y(¢) will be 27 -periodic if the functionsf (¢), jo(§) are periodic
and the equalities

2
/O oE)dE=0 UG +21) = UE)

hold. The last equality means that the monodromy mattifor the linear system (21) satisfies
the condition

M =€l
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This constraint on the variablgs leads to the appearance of the topological chargeour
model. Indeed, let us consider the spectral task

=
U +E(;Gu]a)l/{=0.

Condition (21) holds if and only if this task has a pot = A,[j,] of the periodic or
antiperiodic spectrum such that = 1 for a certain numbet. The equivalent form of this
condition is the following:

@} = arcco$; Tr M) — wm = 0. (22)
Thus we state the one-to-one correspondence
V/E13~ (f(&), jo€), ..., j3a(6):q1. ..., g6 k). (23)

The whole number is the topological charge in our theory; the continuous deformation of
the string configuratiori f (£), ...) for somen into the configuratior(f (¢), ...) with other
numbernn breaks either boundary conditions or gauge (5).

Our next step is to define six parametgraccording to the representation (20). Moreover,
we must to add four constarif, for the reconstruction of the variabl&s from the derivatives
9. X,. Let us consider the usual Noether expressions for the energy—moméytamd the
momentM,,,:

p -t /HX det
. Ao’ 0 o

1 g . . : i0 T 1
M/w = Ao’ L (XuXu - XI)X/I.) dé - % ;/O \Ije(F/LFv - FvF;L)lpe d%‘ .
Letw, = —%sumM“P”. In accordance with the formulae (17) and (18) we have the
equalities:

(S Bl
=0

08 & !
(w)2 = m ; (%) Fy. (25)

It is important that the coefficient®, and F; in the polynomials (24) and (25) depend on the
functionsf (&) andj, (¢) only. This fact means that these formulae givesthgarametric form
of ‘constraint’

(P2, w?; f, jo, ..., j3) =0. (26)

The main idea is to use the componeRtsandM,,, as additional variables instead of the
constantsZ,, ¢; andx. The exact statement is as follows.

Corollary 1. Let a two-parametric grour, be composed from the transformations:

(1) rotationsX,, — A} (¢)X, in the space-like plane which is orthogonal with the vector
P, and pseudo-vectap,,;

(2) translationsX,, — X, +cP,.

Then, if the quantitieg (¢), j,(§) (@ = 0, ..., 3), P, and M,, are constrained by the
equalities (22) and (26), the diffeomorphism

V/Ga= (f (&), jo&), ..., ja&); Pu, My)
takes place.
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The sketch of the proof is as follows. Let the auxiliary vector fi&igh and the spinor
fields W)+ be defined from the variable&(&) and j, (&) with the help of formulae (17) and
(18), where the replacemefit(¢) — To(¢) has been fulfilled. We next define the vector
P, and pseudo-vectap g, by means of the replacemeit — X and¥, — W in
the correspondent Noether expressions. Bgtbe an arbitrary time-like vector an¥,,,
an arbitrary antisymmetrical tensor. Then, if the constraint (26) takes place, the matrix
B € SL(2, C) exists such that the equalities

P =B'PyB W = B*io B
hold. That is why we can reconstruct the matfix= ToB. Moreover, we can restore the
integration constantg,, because the full momen¥,, consists of the information about
the centre of mass of the string. Consequently, the original string vari&blasd V.. can
be restored from the variables j,, P, andM,,. More detailed investigations show that
this reconstruction will be smooth and that two-parametric arbitrariness exists, so that the
corresponding cosets appeat.

To describe the degrees of freedom connected with the géupwve introduce the
additional coordinateg and®, such that-co < ¢ < oo andé € [0, 27]. Now we give
the straightforward definition of the adjunct phase spa@&for the considered string model.
This is a manifold such that any poibt € 2 has the following coordinates: (1)2periodic
complex functionf (¢) without zero mode; (2) 2-periodic real functiong, (¢) (a=0,1,2,3)
such that the functioriy has not zero mode; (3) 4-vect#y, such that the inequality? > 0
holds; (4) antisymmetrical tenzax,,; (5) four additional coordinateg, 6, p andx. Let us
define the Poisson brackets

LFE). Fm)° = &6’(5 —m o®). jom)° = —2%3’(5 — )

Ua®). js(m)° = 2%(—5@5’(5 =)+ Eapcjc(§)8(5 — 1))
wherea, b,c = 1,2,3,ands(¢) = Y, €
{Map, Mys}° = gusMp, + 8y Mas — SayMps — gpsMay
{Mag. P,}° = gpy Pu — gay Pp
r.g°=1  {x.0°=1
(The other possible brackets are equal to zero.) With respect to the defined brackets the space

H34is the Poisson manifold.
The manifoldW is defined as follows. First we require that the equalities

O3=p=0 Oyp=x=0

hold. As @] we denote the constraint (22) for some topological numberLet the set
W, C H2 be the surface of the constrairbs, i = 1, ..., 4, whered, = ®4. Then,

W= U W,.
nezZ
Corollary 2. The constraintsb; = 0,i = 1, ..., 4 will be first-type constraints with respect

to the bracketg-, -1°.

Indeed,{®;, ®;} =0fori =1,2andj = 3,4, ori = 3 andj = 4. Let us prove that
{®q, Py} ox ©1. We first note that the matrix1 depends on the variablgs a = 1, 2, 3 only.
Letus calculate the brackets of the matrix elements of the magtitasdQ, = (i/2) ), ja0a.
The identity

{U'E)+ 0 (EUENRD MP =0
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holds on space(9, therefore we can apply for such calculations the Leibniz falg, C}° =
A{B, C}%+ {A, C}°B and the definition of the matrix1. As result we have the equality
(Q:OOMP =[1O M, C©)]

where the square brackets denote the commutatoddmatrices. The explicit form of the
matrix C (¢) is not important here because it is clear thatife 1, then{Q, (§)® M}° = 0.
Consequently, we have

@1, AY o @4

for arbitrary functionA = A(f, j.; Pu. Mu; q, 0), so that the corollary is proven.
The dynamical equations

X,

0&0

owy

{Ho, X,,)° = 250

{Ho, W4 }° =

hold for the Hamiltonian
2

()

o ® 2 2d +1 3 2 - d
0—2M,</0 )2 de 4;/0 J2(8) s).

These formulae can be proven with help of the representation (17) and (18) for original string
variablesX,,, W, and with help of the obvious equalities

{Ho. jY°=j,  (Ho,f°=f" {Ho, P,}°={Ho, M,,}°=0.
It can be verified directly that all constraints in our theory are coordinated with dynamics.

Remark. It is clear that the brackets of the variabBsandM,,, are motivated by Poincar
algebra. Consequently, we have two annulators h&e?* andw,w"’. But every Poisson
structure{-, -} must be coordinated with the tensor property of all considered functions. So, for
instance, the equaliyP,, A,} = g,, must hold for any 4-vectot,, in order for the dynamical
variablesP, to generate Poincartranslations. In our theory the integration of formula (17)
gives the expression for the radius veckr(£°, £1):

N . 8% g . C, .
X% eYH = Z+$ 4p_ —Z—e‘”fo cosng!
T ﬂn;éo n

where
. 27 )
Ca :/ TT(x)R(x)T (x)e " dx
0

andZ, = M,WP"/PZ. Therefore, we have the brackets
P,P,
p2
which are coordinated with the fact that functi®d will be an annulator. This means that for
every constant 4-vectay the following formula applies:

, b,P*
X, =X, +b, — < - ) P,.

{P;,u XV}O = 8w —

P2

Thus, with respect to the defined brackets, the variatfleswill generate the Poincar
translations on the corresponding cosets only. The same situation holds for the rotations,
mentioned in the definition of the group,. The additional constraintd; and®,4 allow us to
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reconstruct the correct coordination of the introduced Poisson brackets with translations and
rotations. Indeed, let us consider the Lie operator

n n pr
L (P):{P ,...+7Tﬁ{q>3,...

instead of the conventional operator of translatifrt, . . . . In accordance with the definitions
of the variable; and the constrainds, the equality

el Px, = X, +a,

holds. Analogously, Lie operatgd*’, ... must be improved by means of adding the term
with the operatof®y, .. ..

Let us discuss the quantization of the suggested model. We surmise that the structure of
the fundamental Poisson brackets algeligagives some information about the constructed
space of the quantum states. In our model this algebra has the form

Acl = Aim @©P

where Ai: the Poisson brackets algebra of the ‘internal’ varialfés), j,(£) andP is the
Poincaé algebra. It should be emphasized that the energy—momentum and moment of the
string (1) are independent fundamental variables, so there are no problems with the quantum
ordering when we construct the quantum generators of P@ramsformations.

The defined new variables are complicated functions from the original fiéldsd ¥,
which is why the correct introduction of quantum fermionic fields is not so obvious here. The
following proposition clarifies this [20].

Corollary 3. The equalitiesV# (£) = constant hold if and only if the equalitigs(&) = O for
a=0,...,3take place.

This statement means that, in spite of the complicated dependence of the vafianidg,

on the original variables, and W, the bosonic and fermionic degrees of freedom are still
non-mixed. It is natural to fulfil the quantization of the variabfgsn terms of the fermionic
fields with the help of the bosonization procedure [22]. Thus the natural Hilbert space of the
of the quantum states of the string will be the following:

H © (Hy® Hy; ® H,z,)

where the spaceH . ; are the spaces of irreducible representations of PcénakgebraP,
labelled by the eigenvalues of the Casimir opera®ts®, andw"w,; H,—the Fock space

of two-dimensional bosonic field in the ‘box’ arld ,—the Fock space of two-dimensional
fermionic field in the ‘box’. The corresponding physical vectors of states must be selected
with the help of the ‘Schirdinger equations’

(Diwfphys) =0
where®; are the quantum expressions for considered constraints.
The other consequence of this corollary is that the suggested theory can be considered
as the new spinning generalization of the standard bosonic string model with the light-cone
gauge. Indeed, the standard light-cone gauge for bosonic string can be written in the form

N X" = %py/2 (27)

where light-like vector,, are selected usually &%, 0, 0, 1). In our case both spinot,. are
Majorana spinors in 4D spacetime, so the vectdrs= W I'*W. will be light-like always.

The reductionj, = 0 means that these vectors are constant. Moredier »" in accordance

with the usual boundary conditions for the spinor variables. Therefore, we have the theory
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with the gauge (27) where the light-like vectey is constant, but arbitrary. If we require

® = 0, the action (1) takes the standard bosonic form. The real and imaginary parts of the
functions f (£&.) will be the (well known) transversal components for vect@rsX. With
respect to the formulae (5)

Qi dE" d&7 oc k2[(dE)? + (dE-)?]

so this form has a good limit whe® — 0. In spite of this fact, we assume that the two-metric
Q;; is not a natural object for the bosonic c&se= 0, because the spinor variables are absent
here. This case was studied recently in [23], where both classical and quantum versions of the
model were investigated in detail. As a result, we have Regge trajediQfigs + 1) = a, 12,
where the slopes,, n = 1, 2, ... are the eigenvalues for some spectral task in the space of
quantum states. The cage= 0, but® # 0is quite similar technically, but is more interesting,
because it leads to more complicated trajectories.

Note that we can fulfil some unusual reductipn= 0 in our model which corresponds
to the string, where all bosonic degrees of freedom are ‘frozen’. Previous investigation of
this case was made in [19], where the quantization was discussed too. This case is more
complicated because of the (non-trivial) topological condition (22). The author hopes to study
the general quantum case in the future.

5. Concluding remarks

In this paper we have suggested a new concept of adjunct phase space to investigate the
open spinning string. It should be stressed that the suggested approach leads to 4D covariant
theory both in the classical and in the quantum cases. The main result is a new non-trivial
Regge spectrum which can be applied in our opinion to the description of exotic particles.
The dependencé = J(P?), where the spiv = /w?/ P2, can already be analysed on the
classical level with the help of formulae (24) and (25). It will be essentially nonlinear for small
masses although for large? we have the asymptotics x P2+ O(v/P?).

Let us note that we have two fundamental constants in the thedrgnd ®. Because
the spinor part of the action (1) vanishes on the equations of motion, the cofstzant
be introduced into the model not as a fixed constant but as an additional variable. Previous
investigation of the theory with the original configuration spaxe¥; ®) instead of the space
(X, W) was fulfilled in [19, 20]. It should be stressed that such extension leads to the scale-
invariant theory if we define the scale transformation$Xas¥; ©) — (aX, v/a¥; a®). As
a natural result, here the linear dependehee /s(s + 1) = a, 1> was deduced: we have the
set of Regge trajectories with zero intercepts but with various sleped/e considered the
value® as constant not as variable in this work. Because the scale invariance is broken in this
case the resulting Regge spectrum is more complicated than the spectrum in [19, 20]. Note
that models of bosonic strings with non-standard spectrum were last suggested in [24, 25].

It is known that the slope’ of the Regge trajectory can be connected with the tension
of the string:«’ o« 1/7. If the tension is constant and there are no other internal forces, the
slope will be constant too. Thus the complicated form of the Regge trajectory bears arelation,
probably, to some additional internal forces within the string. Note that models where spinning
degrees of freedom were connected with distributed charges and currents were investigated
early on (see, for example, [26]). It appears that such an interpretation is possible in our case
too. The interesting thing here is that the model has topological clwavggch vanishes if
the fermionic variables disappear.
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